Partial Differential Equations

- Definition
- One of the classical partial differential equation of mathematical physics is the equation describing the conduction of heat in a solid body (Originated in the 18th century). And a modern one is the space vehicle reentry problem: Analysis of transfer and dissipation of heat generated by the friction with earth's atmosphere.

For example:

- Consider a straight bar with uniform crosssection and homogeneous material. We wish to develop a model for heat flow through the bar.
- Let $\mathrm{u}(\mathrm{x}, \mathrm{t})$ be the temperature on a cross section located at x and at time t . We shall follow some basic principles of physics:
- A. The amount of heat per unit time flowing through a unit of cross-sectional area is proportional to $\partial u / \partial x$ with constant of proportionality $\mathrm{k}(\mathrm{x})$ called the thermal conductivity of the material.
- B. Heat flow is always from points of higher temperature to points of lower temperature.
- C. The amount of heat necessary to raise the temperature of an object of mass " m " by an amount Δu is a "c(x) m Δu ", where $c(x)$ is known as the specific heat capacity of the material.
- Thus to study the amount of heat $\mathrm{H}(\mathrm{x})$ flowing from left to right through a surface A of a cross section during the time interval $\Delta \mathrm{t}$ can then be given by the formula:

$$
H(x)=-k(x)(\text { area of } \mathrm{A}) \Delta t \frac{\partial u}{\partial x}(x, t)
$$

Likewise, at the point $x+\Delta x$, we have

- Heat flowing from left to right across the plane during an time interval $\Delta \mathrm{t}$ is:

$$
H(x+\Delta x)=-k(x+\Delta x)\left(\text { area of B) } \Delta \mathrm{t} \frac{\partial \mathrm{u}}{\partial t}(x+\Delta x, t) .\right.
$$

- If on the interval $[\mathrm{x}, \mathrm{x}+\Delta \mathrm{x}]$, during time $\Delta \mathrm{t}$, additional heat sources were generated by, say, chemical reactions, heater, or electric currents, with energy density $\mathrm{Q}(\mathrm{x}, \mathrm{t})$, then the total change in the heat $\Delta \mathrm{E}$ is given by the formula:
$\Delta \mathrm{E}=$ Heat entering $\mathrm{A}-$ Heat leaving $\mathrm{B}+$ Heat generated.
- And taking into simplification the principle C above, $\Delta \mathrm{E}=\mathrm{c}(\mathrm{x}) \mathrm{m} \Delta \mathrm{u}$, where $\mathrm{m}=\rho(\mathrm{x}) \Delta \mathrm{V}$. After dividing by $(\Delta \mathrm{x})(\Delta \mathrm{t})$, and taking the limits as $\Delta \mathrm{x}$, and $\Delta \mathrm{t} \rightarrow 0$, we get:
$\frac{\partial}{\partial x}\left[k(x) \frac{\partial u}{\partial x}(x, t)\right]+Q(x, t)=c(x) \rho(x) \frac{\partial u}{\partial t}(x, t)$
- If we assume $\mathrm{k}, \mathrm{c}, \rho$ are constants, then the eq. Becomes:

$$
\frac{\partial u}{\partial t}=\beta^{2} \frac{\partial^{2} u}{\partial x^{2}}+p(x, t)
$$

Boundary and Initial conditions

- Remark on boundary conditions and initial condition on $u(x, t)$.
- We thus obtain the mathematical model for the heat flow in a uniform rod without internal sources ($\mathrm{p}=0$) with homogeneous boundary conditions and initial temperature distribution $\mathrm{f}(\mathrm{x})$, the follolwing Initial Boundary Value Problem:

One Dimensional Heat Equation

$$
\begin{aligned}
& \frac{\partial u}{\partial t}(x, t)=\beta \frac{\partial^{2} u}{\partial x^{2}}(x, t), 0<x<L, t>0 \\
& u(0, t)=u(L, t)=0, \quad t>0 \\
& u(x, 0)=f(x), \quad 0<x<L
\end{aligned}
$$

The method of separation of variables

- Introducing solution of the form
-

$$
u(x, t)=X(x) T(t)
$$

- Substituting into the I.V.P, we obtain:
$X(x) T^{\prime}(t)=\beta X^{\prime \prime}(x) T(t), \quad 0<x<L, t>0$. this leads to the following eq.
$\frac{T^{\prime}(t)}{\beta T(t)}=\frac{X^{\prime \prime}(x)}{X(x)}=$ Constants. Thus we have $T^{\prime}(t)-\beta k T(t)=0$ and $X^{\prime \prime}(x)-k X(x)=0$.

Boundary Conditions

- Imply that we are looking for a non-trivial solution $\mathrm{X}(\mathrm{x})$, satisfying:

$$
\begin{aligned}
& X^{\prime \prime}(x)-k X(x)=0 \\
& X(0)=X(L)=0
\end{aligned}
$$

- We shall consider 3 cases:
- $\mathrm{k}=0, \mathrm{k}>0$ and $\mathrm{k}<0$.
- Case (i): $k=0$. In this case we have

$$
\mathrm{X}(\mathrm{x})=0, \text { trivial solution }
$$

- Case (ii): $\mathrm{k}>0$. Let $\mathrm{k}=\lambda^{2}$, then the $\mathrm{D} . E$ gives $\mathrm{X}^{\prime \prime}-\lambda^{2} \mathrm{X}=0$. The fundamental solution set is: $\left\{e^{\lambda x}, e^{-\lambda x}\right\}$. A general solution is given by:
$X(x)=c_{1} e^{\lambda x}+c_{2} e^{-\lambda x}$
- $X(0)=0 \Rightarrow c_{1}+c_{2}=0$, and
- $X(L)=0 \Rightarrow c_{1} e^{\lambda L}+c_{2} e^{-\lambda L}=0$, hence
- $c_{1}\left(e^{2 \lambda L}-1\right)=0 \Rightarrow c_{1}=0$ and so is $c_{2}=0$.
- Again we have trivial solution $\mathrm{X}(\mathrm{x}) \equiv 0$.

Finally Case (iii) when $\mathrm{k}<0$.

- We again let $\mathrm{k}=-\lambda^{2}, \lambda>0$. The D.E. becomes:
- $\mathrm{X}^{\prime \prime}(\mathrm{x})+\lambda^{2} \mathrm{X}(\mathrm{x})=0$, the auxiliary equation is
- $r^{2}+\lambda^{2}=0$, or $r= \pm \lambda i$. The general solution:
- $\mathrm{X}(\mathrm{x})=\mathrm{c}_{1} \mathrm{e}^{\mathrm{i} \lambda \mathrm{x}}+\mathrm{c}_{2} \mathrm{e}^{-\mathrm{i} \lambda \mathrm{x}}$ or we prefer to write:
- $\mathrm{X}(\mathrm{x})=\mathrm{c}_{1} \cos \lambda \mathrm{x}+\mathrm{c}_{2} \sin \lambda \mathrm{x}$. Now the boundary conditions $\mathrm{X}(0)=\mathrm{X}(\mathrm{L})=0$ imply:
- $c_{1}=0$ and $c_{2} \sin \lambda L=0$, for this to happen, we need $\lambda L=n \pi$, i.e. $\lambda=n \pi / L$ or $k=-(n \pi / L)^{2}$.
- We set $X_{n}(x)=a_{n} \sin (n \pi / L) x, n=1,2,3, \ldots$

Finally for $T^{\prime}(t)-\beta k T(t)=0, k=-\lambda^{2}$.

- We rewrite it as: $T^{\prime}+\beta \lambda^{2} T=0$. Or T^{\prime} $=-\beta \lambda^{2} \mathrm{~T}$. We see the solutions are
conqu! $!$ IOU MG £I. λ :

LJJIZ fJG tiInct!ou

$$
\mathrm{u}(\mathrm{x}, \mathrm{t})=\sum \mathrm{u}_{\mathrm{n}}(\mathrm{x}, \mathrm{t}), \text { over all } \mathrm{n} .
$$

- More precisely,

$$
u(x, t)=\sum_{1}^{\infty} c_{n} e^{-\beta\left(\frac{n \pi}{L}\right)^{2} t} \sin \left(\frac{n \pi}{L}\right) x
$$

We must have :

$$
u(x, 0)=\sum_{1}^{\infty} c_{n} \sin \left(\frac{n \pi}{L}\right) x=f(x)
$$

- This leads to the question of when it is possible to represent $\mathrm{f}(\mathrm{x})$ by the so called

Fourier sine series ??

Jean Baptiste Joseph Fourier (1768-1830)

- Developed the equation for heat transmission and obtained solution under various boundary conditions (1800-1811).
- Under Napoleon he went to Egypt as a soldier and worked with G. Monge as a cultural attache for the French army.

Example

- Solve the following heat flow problem
$\frac{\partial u}{\partial t}=7 \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<\pi, t>0$.
$u(0, t)=u(\pi, t)=0, \quad t>0$, $u(x, 0)=3 \sin 2 x-6 \sin 5 x, 0<x<\pi$.
- Write $3 \sin 2 \mathrm{x}-6 \sin 5 \mathrm{x}=\sum \mathrm{c}_{\mathrm{n}} \sin (\mathrm{n} \pi / \mathrm{L}) \mathrm{x}$, and comparing the coefficients, we see that c_{2}
$=3, c_{5}=-6$, and $c_{n}=0$ for all other n. And we have $u(x, t)=u_{2}(x, t)+u_{5}(x, t)$.

Wave Equation

- In the study of vibrating string such as piano wire or guitar string.

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<L, \quad t>0, \\
& u(0, t)=u(L, t), \quad t>0, \\
& u(x, 0)=f(x), \quad 0<x<L,
\end{aligned}
$$

$$
\frac{\partial u}{\partial t}(x, 0)=g(x), \quad 0<x<L .
$$

Example:

- $f(x)=6 \sin 2 x+9 \sin 7 x-\sin 10 x$, and
- $g(x)=11 \sin 9 x-14 \sin 15 x$.
- The solution is of the form:

$$
u(x, t)=\sum_{n=1}^{\infty}\left[a_{n} \cos \frac{n \pi \alpha}{L} t+b_{n} \sin \frac{n \pi \alpha}{L} t\right] \sin \frac{n \pi x}{L}
$$

Reminder:

- TA's Review session
- Date: July 17 (Tuesday, for all students)
- Time: 10-11:40 am
- Room: 304 BH

Final Exam

- Date: July 19 (Thursday)
- Time: 10:30-12:30 pm
- Room: LC-C3
- Covers: all materials
- I will have a review session on Wednesday

Fourier Series

- For a piecewise continuous function f on $[-\mathrm{T}, \mathrm{T}]$, we have the Fourier series for f :

$$
f(x) \approx \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left\{a_{n} \cos \left(\frac{n \pi}{T}\right) x+b_{n} \sin \left(\frac{n \pi}{T}\right) x\right\}
$$

where

$$
\begin{aligned}
& a_{0}=\frac{1}{T} \int_{-T}^{T} f(x) d x, \text { and } \\
& a_{n}=\frac{1}{T} \int_{-T}^{T} f(x) \cos \left(\frac{n \pi}{T}\right) x d x ; \mathrm{n}=1,2,3, \cdots \\
& b_{n}=\frac{1}{T} \int_{-T}^{T} f(x) \sin \left(\frac{n \pi}{T}\right) x d x ; \mathrm{n}=1,2,3, \cdots
\end{aligned}
$$

Examples

- Compute the Fourier series for

$$
f(x)=\left\{\begin{array}{lc}
0, & -\pi<x<0 \\
x, & 0<x<\pi
\end{array}\right.
$$

$$
g(x)=|x|, \quad-1<x<1
$$

Convergence of Fourier Series

- Pointwise Convegence
- Theorem. If f and f^{\prime} are piecewise continuous on [$-\mathrm{T}, \mathrm{T}$], then for any x in $(-\mathrm{T}, \mathrm{T})$, we have

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left\{a_{n} \cos \frac{n \pi x}{T}+b_{n} \sin \frac{n \pi x}{T}\right\}=\frac{1}{2}\left\{f\left(x^{+}\right)+f\left(x^{-}\right\},\right.
$$

- where the a_{n} 's and b_{n} 's are given by the previous fomulas. It converges to the average value of the left and right hand limits of $f(x)$. Remark on $x=$ T , or -T .

Fourier Sine and Cosine series

- Consider Even and Odd extensions;
- Definition: Let $\mathrm{f}(\mathrm{x})$ be piecewise continuous on the interval $[0, T]$. The Fourier cosine series of $\mathrm{f}(\mathrm{x})$ on $[0, \mathrm{~T}]$ is:
$\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi}{T}\right) x, a_{n}=\frac{2}{T} \int_{0}^{T} f(x) \cos \left(\frac{n \pi}{T}\right) x d x$
- and the Fourier sine series is:

$$
\begin{aligned}
& \sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi}{T}\right) x, b_{n}=\frac{2}{T} \int_{0}^{T} f(x) \sin \left(\frac{n \pi}{T}\right) x d x, \\
& n=1,2,3, \cdots
\end{aligned}
$$

Consider the heat flow problem:

(1) $\frac{\partial u}{\partial t}=2 \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<\pi \quad t>0$,
(2) $u(0, t)=u(\pi, \mathrm{t}), \quad t>0$,
(3) $u(x, 0)= \begin{cases}x, & 0<x \leq \frac{\pi}{2}, \\ \pi-x, & \frac{\pi}{2} \leq x<\pi\end{cases}$

Solution

- Since the boundary condition forces us to consider sine waves, we shall expand $\mathrm{f}(\mathrm{x})$ into its Fourier Sine Series with $T=\pi$. Thus

$$
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x
$$

With the solution

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-2 n^{2} t} \sin n x
$$

where

$$
b_{n}= \begin{cases}0, & \text { if } \mathrm{n} \text { is even } \\ \frac{4(-1)^{(\mathrm{n}-1) / 2}}{\mathrm{n}^{2} \pi} & \text { when } \mathrm{n} \text { is odd }\end{cases}
$$

